Structural Calculations Cover Sheet

Project Number:	2022.172
Project Name:	Mukherjee Residence

Date:December 23, 2022Architect:Suzanne Zahr

Structural Design For: Structural design for an addition and remodel. **Construction Type:** Conventional wood framing with conventional concrete foundation.

CODES

2018 International Building Code (IBC) 2018 NDS ASCE 7-16

LOADS

Dead Loads	As required	SSIONAL ENG
Roof snow Load	25 psf	A REAL PROPERTY OF THE PROPERT
Floor Load	40 psf	
Wind	110 mph, Exposure B, Per ASCE 7-16 Se	ection 28, Kzt = 1.60
Seismic	Per ASCE 7-16 Section 12	
Peak Ground A	Accelerations (PGA) based on USGS Haz	ards Program (by address).
PGA 1 sec = $$	507 PGA .2 sec = 1.467 %V =150) * DL

Material Design Values

Soils (assumed)	Minimum 1,500 psf allowed bearing (subject to field verification)			
Concrete	f'c=2,500 psi; 5-1/2 sack mix, or alternate mix pre-approved by bldg. dept.			
Reinforcing	Grade 60; Fy=60,000 psi minimum			
Sawn Lumber	Joists, Rafters:	Hem-Fir #2 and better		
	Beams, Posts:	DF-L #2		
	Studs & Plates: Hem-Fir	Standard		
Parallam Beams	2.2E PSL, Fb=2,900 psi, Fv=290 psi, E=2.2*10^6 psi (minimum)			
Microllam Beams	1.9E LVL, Fb=2,600 psi, Fv=285 psi, E=1.9*10^6 psi (minimum)			
Anchor Bolts	ASTM A325 hold down	bolts, F1554 Anchor Bolts, A307 other bolts		

Roof, R1: New Roof Joist, North 1 piece(s) 2 x 8 HF No.2 @ 24" OC

Sloped Length: 11' 2 7/16"

Member Length : 11' 2 13/16"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 7.5/12

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	276 @ 9' 2 1/2"	911 (1.50")	Passed (30%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	265 @ 2' 11 5/8"	1251	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	448 @ 5' 11 5/8"	1477	Passed (30%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.053 @ 5' 9 5/16"	0.274	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.085 @ 5' 9 11/16"	0.412	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.50"	215	304	519	Blocking
2 - Hanger on 7 1/4" SPF beam	3.50"	Hanger ¹	1.50"	120	180	300	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 10" o/c	
Bottom Edge (Lu)	10' 10" o/c	

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LRU28Z	1.94"	N/A	6-10dx1.5	5-10d	
Pafer to manufacturer notes and instructions for proper installation and use of all connectors						

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 9' 6"	24"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

Roof, R2: New Roof Flush Beam, North 1 piece(s) 3 1/2" x 11 1/4" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3627 @ 18' 10 1/4"	7656 (3.50")	Passed (47%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2618 @ 17' 9 1/4"	8754	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	13378 @ 9' 5 1/16"	20666	Passed (65%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.553 @ 9' 5 7/8"	0.623	Passed (L/406)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.953 @ 9' 5 3/4"	0.934	Passed (L/235)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Upward deflection on right cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - SPF	3.50"	3.50"	1.50"	1242	1701	2943	Blocking
2 - Column - SPF	3.50"	3.50"	1.66"	1536	2090	3627	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	21' o/c			
Bottom Edge (Lu)	21' o/c			
Maximum allowable bracing intervals based on applied load				

kimum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 21'	N/A	12.3		
1 - Uniform (PLF)	0 to 21' (Front)	N/A	60.0	90.0	Linked from: R1: New Roof Joist, North, Support 2
2 - Uniform (PLF)	0 to 21' (Back)	N/A	60.0	90.0	Linked from: R1: New Roof Joist, North, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

Roof, R3: North Window Header 2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2015 @ 1 1/2"	7613 (3.00")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1940 @ 10 1/4"	5544	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	4175 @ 2' 3 3/4"	8182	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.041 @ 2' 3 3/4"	0.109	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.071 @ 2' 3 3/4"	0.219	Passed (L/736)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	854	1161	2015	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	854	1161	2015	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 8" o/c	
Bottom Edge (Lu)	4' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 7 1/2"	N/A	7.4		
1 - Uniform (PSF)	0 to 4' 7 1/2"	2'	15.0	25.0	Default Load
2 - Point (lb)	2' 3 3/4"	N/A	1536	2090	Linked from: R2: New Roof Flush Beam, North, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

John S. Apolis, P.E	P.E. CSES, Inc.			Job n	umber:	2022.172		
Project:	Mukherjee Residence				Date:	23-Dec-22		
Architect:	Suzanne Zahr		P	Page number:		R4		
Post Design (Combined Axial and Moment Loading)								٦
2018 International Bui	ilding Code (l	IBC)					2018 ND	S
Post Description: B	eam R2, So	outh Supp	ort					
Snow Load:	1	Wind Load:						
Repetitive Member:		P.T. Lumber:						
Geometry and loads:								
Height	12 ft	w(d)			0 plf	M(d)		
Axial Load	2943 lbs	w(b)			0 plf	M(b)	0 ft-lt	os
Le(d)	12 ft	Le(b)			12 ft			
Material Properties:								
Fb1	900 psi		Fb(d)'			1035 psi		
Fb2	900 psi		Fb(b)'			1035 psi		
Fc	1350 psi		Fc'		-	270.26 psi		
E	1.6 msi		E'			1.6 msi		
Emin	0.58 msi		Emin'			0.58 msi		
Selected Member:	DF #2			3.5	У	K	3.5	٦
				b			d	
Member properties:			Variat	les:				
Section Modulus (d):	7.1 in	^3	Rb(d)			6.41		
Section Modulus (b):	7.1 in	^3	Rb(b)			6.41		
Section Area:	12.3 in	^2	c			0.8		
Member stresses: 1	Provided				F	Required		
FcE(d)	282 psi	>			fc	240 psi	OK	
FcE(b)	282 psi	>			fc	240 psi	OK	
FbE	16917 psi	>			fb(d)	0 psi	OK	
FbE	16917 psi	>			fb(b)	0 psi	OK	
Bending and Axial Compre	ession Check:							
NDS 2018 EQ 3.9-3		0.79		<		1.0	<u>OK</u>	

John S. Apolis, P.E	hn S. Apolis, P.E. CSES, Inc.			Job n	umber:	2022.172	
Project:	Mukherjee Residence				Date:	23-Dec-22	
Architect:	Suzanne Zahr			F	age n	umber:	R5
Post Design (Combined Axial and Moment Loading)							
2018 International Bu	ilding Code (IBC)					2018 NDS
Post Description: E	Beam R2, No	orth Supp	ort				
Snow Load:	1	Wind Load:					
Repetitive Member:		P.T. Lumber:					
Geometry and loads:							
Height	2.5 ft	w(d)			0 plf	M(d)	
Axial Load	3627 lbs	w(b)			0 plf	M(b)	0 ft-lbs
Le(d)	2.5 ft	Le(b)			0.5 ft		
Material Properties:	000					1025	
Fbl	900 psi		Fb(d)			1035 psi	
FD2	900 psi		FD(D)			1035 psi	
FC	1550 psi		FC			1400.8 psi	
E Fmin	1.0 msi		E Fmin'			1.0 msi 0 58 msi	
	0.50 1151		Linn			0.50 1151	
Selected Member:	DF #2			3.5	2	K	3.5
				b			d
Member properties:			Variab	oles:		2.02	
Section Modulus (d):	/.1 in	^3	Rb(d)			2.93	
Section Modulus (b):	/.1 1n 12.3 in	^3 ^?	Rb(b)			1.31	
Section Area.	12.3 111	2 Z	C			0.8	
Member stresses:	Provided				F	Required	
FcE(d)	6489 psi	>			fc	296 psi	OK
FcE(b)	162231 psi	>			fc	296 psi	OK
FbE	81200 psi	>			fb(d)	0 psi	OK
FbE	81200 psi	>			fb(b)	0 psi	ОК
Bending and Axial Compre	ession Check:						
NDS 2018 EQ 3.9-3		0.04		<		1.0	<u>OK</u>

John S. Apolis, P.E	E. CSES, Inc.		J	ob n	umber:	2022.172	•	
Project:	Mukherjee Residence				Date:	23-Dec-22		
Architect:	Suzanne Zahr		Pa	Page number:		R6		
Post Design (Con	nbined A	xial and N	Aome	ent L	oad	ling)		
2018 International Bui	ilding Code ((IBC)					2018 NE	S
Post Description: H	leader R3,	Support						
Snow Load:	1	Wind Load:						
Repetitive Member:		P.T. Lumber:						
_								
Geometry and loads:								
Height	10 ft	w(d)		() plf	M(d)		
Axial Load	3627 lbs	w(b)		() plf	M(b)	0 ft-l	bs
					-			
Le(d)	10 ft	Le(b)		0	.5 ft			
Material Properties:						· · ·		
Fb1	850 psi		Fb(d)'			977.5 psi		
Fb2	850 psi		Fb(b)'			977.5 psi		
Fc	1300 psi		FC'		(592.21 psi		
E	1.3 msi		E' Entit			1.3 msi		
Emin	0.47 msi		Emin			0.47 msi		
Selected Member:	HF #2			3	У	K	5.5	
				b			d	
Member properties:			Variabl	les:				
Section Modulus (d):	15.1 ii	n^3	Rb(d)			3.45		
Section Modulus (b):	8.3 ii	n^3	Rb(b)			1.91		
Section Area:	16.5 in	n^2	c			0.8		
Member stresses: 1	Provided				F	Required		
FcE(d)	812 psi	>			fc	220 psi	OK	
FcE(b)	96585 psi	>			fc	220 psi	OK	
FbE	47392 psi	>		f	b(d)	0 psi	OK	
FbE	47392 psi	>		f	b(b)	0 psi	OK	
Bending and Axial Compre	ession Check:							
NDS 2018 EQ 3.9-3	_	0.10		<		1.0	<u>OK</u>	

Roof, R7: New Roof Joist, Garage 1 piece(s) 2 x 10 HF No.2 @ 24" OC

Sloped Length: 17' 9 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 505 @ 13' 11 1/2" 911 (1.50") Passed (55%) 1.0 D + 1.0 S (Alt Spans) Shear (lbs) 467 @ 2' 10 7/8" 1596 Passed (29%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 1.0 D + 1.0 S (Alt Spans) 1455 @ 8' 2 5/16" 2204 Passed (66%) 1.15 Live Load Defl. (in) 0.256 @ 8' 1 1/16" 0.492 Passed (L/693) ---1.0 D + 1.0 S (Alt Spans) Total Load Defl. (in) 0.439 @ 8' 1 3/16" 0.738 Passed (L/403) --1.0 D + 1.0 S (Alt Spans)

• Deflection criteria: LL (L/360) and TL (L/240)

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - SPF	3.50"	3.50"	1.50"	309	412	722	Blocking
2 - Hanger on 9 1/4" SPF beam	3.50"	Hanger ¹	1.50"	223	305	528	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 5" o/c	
Bottom Edge (Lu)	17' 5" o/c	
		-

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	LRU28Z	1.94"	N/A	6-10dx1.5	5-10d				
Defer to manufacturer notes and instructions for proper installation and use of all connectors									

Refer to manufacturer notes and instructions for proper installation and use of all connectors

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 14' 3"	24"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

Member Length : 18' 5/16"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 9/12

Roof, R8: New Roof Flush Beam, Garage South 1 piece(s) 3 1/2" x 11 1/4" 2.2E Parallam® PSL

Overall Length: 17' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5278 @ 2' 1 3/4"	7656 (3.50")	Passed (69%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3533 @ 3' 2 3/4"	8754	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	14627 @ 9' 8 11/16"	20666	Passed (71%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.387 @ 9' 7 11/16"	0.498	Passed (L/463)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.679 @ 9' 7 13/16"	0.747	Passed (L/264)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Upward deflection on left cantilever exceeds overhang deflection criteria.

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - SPF	3.50"	3.50"	2.41"	2299	2979	5278	Blocking
2 - Column - SPF	3.50"	3.50"	1.86"	1760	2305	4066	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' 3" o/c				
Bottom Edge (Lu)	17' 3" o/c				
Maximum allowable bracing intervals based on applied load					

bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 3"	N/A	12.3		
1 - Uniform (PLF)	0 to 17' 3" (Front)	N/A	111.5	152.5	Linked from: R7: New Roof Joist, Garage, Support 2
2 - Uniform (PLF)	0 to 17' 3" (Back)	N/A	111.5	152.5	Linked from: R7: New Roof Joist, Garage, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
William Nocka	
(978) 503-9935	
11wnocka@gmail.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3073 @ 1' 1 3/4"	7656 (3.50")	Passed (40%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1869 @ 2' 2 3/4"	8754	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5268 @ 5' 8"	20666	Passed (25%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.055 @ 5' 7 1/2"	0.298	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.097 @ 5' 7 9/16"	0.447	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - SPF	3.50"	3.50"	1.50"	1338	1735	3073	Blocking
2 - Column - SPF	3.50"	3.50"	1.50"	1073	1403	2476	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 3" o/c	
Bottom Edge (Lu)	10' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 3"	N/A	12.3		
1 - Uniform (PLF)	0 to 10' 3" (Front)	N/A	111.5	152.5	Linked from: R7: New Roof Joist, Garage, Support 2
2 - Uniform (PLF)	0 to 10' 3" (Back)	N/A	111.5	152.5	Linked from: R7: New Roof Joist, Garage, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
William Nocka CSES (978) 503-9935 11wnocka@gmail.com	

John S. Apolis, P	P.E.	CSES, Inc.		Job number: 2				
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22			
Architect:	Suzanne	Zahr]	Page number:	R10			
BEAM DESIG	N (Unif	orm Load	+Concen	trated Load)			
2018 International	2018 International Building Code (IBC)							
Beam Descriptio	n: Garag	ge South Wi	ndow Hea	der				
Fully Supported:	1	Snow Load:	1	Wind Load:				
Repetitive Member:		P.T. Lumber:		Wet Use:				
Geometry and Loads:								
Span:	6.5 ft	Tributary Width:	2 ft	P Location:	3.25 ft			
Add'l uniform DL:		DL unit load:	15 psf	Concentrated DL:	2299 lbs			
Add'l uniform LL:		LL unit load:		Concentrated LL:				
Add'l uniform SL:		SL unit load:	25 psf	Concentrated SL:	2979 lbs			
Add'l uniform WL:		WL unit load:		Concentrated WL:				
DL Reaction 1:	1247 lbs	DL Reaction 2:	1247 lbs	Note: Design auton	natically uses			
LL Reaction 1:	0 lbs	LL Reaction 2:	0 lbs	ASD load combina	tions			
SL Reaction 1:	1652 lbs	SL Reaction 2:	1652 lbs					
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs					
Total Reaction 1:	2899 lbs	Fotal Reaction 2:	2899 lbs					
Material Properties:								
E	2 msi	E'	2 msi					
Fb	2600 psi	Fb'	3098 psi					
Fv	285 psi	Fv'	328 psi					
Fc perp	750 psi	Fc perp'	750 psi					
Emin	1.016 msi	Emin'	1.016 msi					
Deflection analysis:								
For total lo	ad: Allowed	deflection criteria	, span/	240				
For LL or	nly: Allowed	deflection criteria	, span/	360				
Max. allowed total defl:	0.33 in		Max LL defl:	0.22 in				
Total defl. * I:	27.7 in^4		Required I:	85.22 in^4				
LL defl. * I:	15.73 in^4		Required I:	72.6 in^4				
Actual deflections:	TOTAL:	0.12 in		0.07 in				
Force analysis:								
Max. moment:	8999	ft-lb	Max Shear:	2899	lbs			
Selected Member	(2)	1 \/I	1 75	v	0.25			
Sciected Member	(2)		1.75	Δ	7.43			
Mamhar	nronarties	Provided.		Romirod.				
Mome	nt of inertia.	230.84 in^{4}		85 22 in^4				
Secti	on Modulus.	49 91 in^3		34 86 in^3				
Section	ection Area	32.38 in^2		13 27 in^2				
B	earing Area:	52.50 m 2		3.87 in^2				
Minimum bearing	dimensions:	3.5 in	х	1.1 in				
e								

John S. Apolis, P.E	IN S. Apolis, P.E. CSES, Inc. Job number:			2022.172					
Project:	roject: Mukherjee Residence				Date:	23-Dec-22			
Architect:	Suzanne [®] Za	hr		Page 1	number:	R11			
Post Design (Combined Axial and Moment Loading)									
2018 International Building Code (IBC)									
Post Description: U	Jpper Floor	- Garage C	entra	l Post					
Snow Load:	1	Wind Load:							
Repetitive Member:		P.T. Lumber:							
-		•							
Geometry and loads:									
Height	8 ft	w(d)		0 plf	M(d)				
Axial Load	6542 lbs	w(b)		0 plf	M(b)	0 ft-lbs			
Le(d)	8 ft	Le(b)		8 ft					
Material Properties:									
Fb1	900 psi		Fb(d)'		1035 psi				
Fb2	900 psi		Fb(b)'		1035 psi				
Fc	1350 psi		Fc'		568.13 psi				
E	1.6 msi		E'		1.6 msi				
Emin	0.58 msi		Emin'		0.58 msi				
Selected Member:	DF #2			3.5	X	5.5			
<u></u>				b		d			
Member properties:			Variab	les:					
Section Modulus (d):	17.6 in	^3	Rb(d)		3.33				
Section Modulus (b):	11.2 in	^3	Rb(b)		6.57				
Section Area:	19.3 in	^2	с		0.8				
Member stresses: 1	Provided				Required				
FcE(d)	1565 psi	>		fc	340 psi	ОК			
FcE(b)	634 psi	>		fc	340 psi	ОК			
FbE	16148 psi	>		fb(d)	0 psi	OK			
FbE	16148 psi	>		fb(b)	0 psi	ОК			
Bending and Axial Compre	ession Check:								
NDS 2018 EQ 3.9-3		0.36		<	1.0	<u>OK</u>			

John S. Apolis, P	P.E.	CSES, Inc.		Job number:	2022.172				
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22				
Architect:	Suzanne	Zahr]	Page number:	U1				
BEAM DESIGN (Uniform Load+Concentrated Load)									
2018 International	Building (Code (IBC)			2018 NDS				
Beam Descriptio	n: North	Floor Joists	5						
Fully Supported:	1	Snow Load:		Wind Load:					
Repetitive Member:	1	P.T. Lumber:		Wet Use:					
Geometry and Loads:									
Span:	14 ft	Tributary Width:	1.33 ft	P Location:	3.833 ft				
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:					
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:					
Add'l uniform SL:		SL unit load:		Concentrated SL:					
Add'l uniform WL:		WL unit load:		Concentrated WL:					
DL Reaction 1:	112 lbs	DL Reaction 2:	112 lbs	Note: Design auton	natically uses				
LL Reaction 1:	372 lbs	LL Reaction 2:	372 lbs	ASD load combination	tions				
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs						
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs						
Total Reaction 1:	484 lbs	Γotal Reaction 2:	484 lbs						
Material Properties:									
E	1.3 msi	E'	1.3 msi						
Fb	850 psi	Fb'	1075 psi						
Fv	150 psi	Fv'	150 psi						
Fc perp	405 psi	Fc perp'	405 psi						
Emin	0.47 msi	Emin'	0.47 msi						
Deflection analysis:									
For total lo	ad: Allowed	deflection criteria	, span/	240					
For LL or	nly: Allowed	deflection criteria	, span/	360					
Max. allowed total defl:	0.7 in		Max LL defl:	0.47 in					
Total defl. * I:	45.98 in^4		Required I:	65.69 in^4					
LL defl. * I:	35.37 in^4	0.463	Required I:	75.8 in^4					
Actual deflections:	IOTAL:	0.46 in		0.36 in					
Force analysis:									
Max. moment:	1694	ft-lb	Max Shear:	484	lbs				
Selected Member	(1)	HF #2	1.5	X	9.25				
Member	properties:	Provided:		Required:					
Mome	nt of inertia:	98.93 in^4		75.8 in^4					
Secti	on Modulus:	21.39 in^3		18.91 in^3					
S	ection Area:	13.88 in^2		4.84 in^2					
В	earing Area:			1.2 in^2					
Minimum bearing	dimensions:	1.5 in	Х	0.8 in					

John S. Apolis, F	P.E.	CSES, Inc.		Job number:	2022.172				
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22				
Architect:	Suzanne	Zahr]	Page number:	U2				
BEAM DESIG	BEAM DESIGN (Uniform Load+Concentrated Load)								
2018 International	2018 International Building Code (IBC)								
Beam Descriptio	n: Garag	ge South Eas	st Flush B	eam					
Fully Supported:	1	Snow Load:	1	Wind Load:					
Repetitive Member:		P.T. Lumber:		Wet Use:					
Geometry and Loads:									
Span:	13.75 ft	Tributary Width:	6 ft	P Location:	3.833 ft				
Add'l uniform DL:	120 lbs/ft	DL unit load:	12 psf	Concentrated DL:					
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:					
Add'l uniform SL:	200 lbs/ft	SL unit load:		Concentrated SL:					
Add'l uniform WL:		WL unit load:		Concentrated WL:					
DL Reaction 1:	1320 lbs	DL Reaction 2:	1320 lbs	Note: Design auton	natically uses				
LL Reaction 1:	1650 lbs	LL Reaction 2:	1650 lbs	ASD load combina	tions				
SL Reaction 1:	1375 lbs	SL Reaction 2:	1375 lbs						
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs						
Total Reaction 1:	3589 lbs	Γotal Reaction 2:	3589 lbs						
Material Properties:									
E	2.2 msi	E'	2.2 msi						
Fb	2900 psi	Fb'	3359 psi						
Fv	290 psi	Fv'	334 psi						
Fc perp	625 psi	Fc perp'	625 psi						
Emin	0.914 msi	Emin'	0.914 msi						
Deflection analysis:									
For total lo	ad: Allowed	deflection criteria	, span/	240					
For LL or	nly: Allowed	deflection criteria	, span/	480					
Max. allowed total defl:	0.69 in		Max LL defl:	0.34 in					
Total defl. * I:	231.04 in^4		Required I:	336.06 in^4					
LL defl. * I:	160.85 in^4		Required I:	467.93 in^4					
Actual deflections:	TOTAL:	0.37 in		0.26 in					
Force analysis:									
Max. moment:	12336	ft-lb	Max Shear:	3589	lbs				
Selected Member	(1)	PSL	5.25	X	11.25				
	(1)		0.20						
Member	properties:	Provided:		Required:					
Mome	ent of inertia:	622.92 in^4		467.93 in^4					
Secti	on Modulus:	110.74 in^3		44.07 in^3					
S	Section Area:	59.06 in^2		16.14 in^2					
В	earing Area:			5.74 in^2					
Minimum bearing	dimensions:	5.25 in	Х	1.09 in					

John S. Apolis, P.E	. (CSES, Inc.		Job number:			2022.172		
Project:	Mukherjee	Residence	<u>!</u>	Date:			23-Dec-22		
Architect:	Suzanne Za	ahr		F	Page n	umber:	U3		
Post Design (Combined Axial and Moment Loading)									
2018 International Building Code (IBC)									
Post Description: B	leam U2 Su	ipport Post	t						
Snow Load:	1	Wind Load:							
Repetitive Member:		P.T. Lumber:							
Geometry and loads:									
Height	8 ft	w(d)			0 plf	M(d)			
Axial Load	3588.75 lbs	w(b)			0 plf	M(b)	0 ft-lb		
Le(d)	8 ft	Le(b)			8 ft				
Material Properties:									
Fb1	850 psi		Fb(d)'			977.5 psi			
Fb2	850 psi		Fb(b)'			977.5 psi			
Fc	1300 psi		Fc'			355.15 psi			
E	1.3 msi		E'			1.3 msi			
Emin	0.47 msi		Emin'			0.47 msi			
Selected Member:	HF #2			3	2	X	5.5		
				b			d		
Member properties:			Variab	les:					
Section Modulus (d):	15.1 ir	n^3	Rb(d)			3.09			
Section Modulus (b):	8.3 ir	n^3	Rb(b)			7.66			
Section Area:	16.5 ir	n^2	c			0.8			
Member stresses:	Provided				F	Required			
FcE(d)	1268 psi	>			fc	218 psi	OK		
FcE(b)	377 psi	>			fc	218 psi	OK		
FbE	9614 psi	>			fb(d)	0 psi	OK		
FbE	9614 psi	>			fb(b)	0 psi	OK		
Bending and Axial Compre	ession Check:								
NDS 2018 EQ 3.9-3		0.38		<		1.0	<u>OK</u>		

John S. Apolis, P	P.E.	CSES, Inc.		Job number:	2022.172			
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22			
Architect:	Suzanne	Zahr]	Page number:	U4			
BEAM DESIGN (Uniform Load+Concentrated Load)								
2018 International	Building (Code (IBC)			2018 NDS			
Beam Descriptio	n: Garag	ge Floor Flug	sh Beam S	outh				
Fully Supported:	1	Snow Load:		Wind Load:				
Repetitive Member:		P.T. Lumber:		Wet Use:				
Geometry and Loads:								
Span:	14.75 ft	Tributary Width:	12 ft	P Location:	3.833 ft			
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:				
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:				
Add'l uniform SL:		SL unit load:		Concentrated SL:				
Add'l uniform WL:		WL unit load:		Concentrated WL:				
DL Reaction 1:	1062 lbs	DL Reaction 2:	1062 lbs	Note: Design auton	natically uses			
LL Reaction 1:	3540 lbs	LL Reaction 2:	3540 lbs	ASD load combina	tions			
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs					
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs					
Total Reaction 1:	4602 lbs	Γotal Reaction 2:	4602 lbs					
Material Properties:								
E	2.2 msi	E'	2.2 msi					
Fb	2900 psi	Fb'	2903 psi					
Fv	290 psi	Fv'	290 psi					
Fc perp	625 psi	Fc perp'	625 psi					
Emin	0.914 msi	Emin'	0.914 msi					
Deflection analysis:								
For total lo	ad: Allowed	deflection criteria	, span/	240				
For LL or	nly: Allowed	deflection criteria	, span/	480				
Max. allowed total defl:	0.74 in		Max LL defl:	0.37 in				
Total defl. * I:	302.07 in^4		Required I:	409.59 in^4				
LL defl. * I:	232.36 in^4		Required I:	630.14 in^4				
Actual deflections:	TOTAL:	0.41 in		0.32 in				
Force analysis:								
Max. moment:	16970	ft-lb	Max Shear:	4602	lbs			
Selected Member	(1)	PSL	5.25	X	11.875			
	(1)				11070			
Member	· properties:	Provided:		Required:				
Mome	ent of inertia:	732.62 in^4		630.14 in^4				
Secti	on Modulus:	123.39 in^3		70.14 in^3				
S	Section Area:	62.34 in^2		23.8 in^2				
В	earing Area:			7.36 in^2				
Minimum bearing	dimensions:	5.25 in	Х	1.4 in				

John S. Apolis, F	P.E.	CSES, Inc.		Job number:	2022.172			
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22			
Architect:	Suzanne	Zahr]	Page number:	U5			
BEAM DESIGN (Uniform Load+Concentrated Load)								
2018 International	Building (Code (IBC)			2018 NDS			
Beam Descriptio	n: Garag	ge Floor Flug	sh Beam V	Vest of Stair				
Fully Supported:	1	Snow Load:		Wind Load:				
Repetitive Member:		P.T. Lumber:		Wet Use:				
Geometry and Loads:								
Span:	4 ft	Tributary Width:	4 ft	P Location:	3.833 ft			
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:				
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:				
Add'l uniform SL:		SL unit load:		Concentrated SL:				
Add'l uniform WL:		WL unit load:		Concentrated WL:				
DL Reaction 1:	96 lbs	DL Reaction 2:	96 lbs	Note: Design auton	natically uses			
LL Reaction 1:	320 lbs	LL Reaction 2:	320 lbs	ASD load combinat	tions			
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs					
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs					
Total Reaction 1:	416 lbs	Γotal Reaction 2:	416 lbs					
Material Properties:								
E	1.3 msi	E'	1.3 msi					
Fb	850 psi	Fb'	935 psi					
Fv	150 psi	Fv'	150 psi					
Fc perp	405 psi	Fc perp'	405 psi					
Emin	0.47 msi	Emin'	0.47 msi					
Deflection analysis:								
For total lo	ad: Allowed	deflection criteria	, span/	240				
For LL of	nly: Allowed	deflection criteria	, span/	480				
Max. allowed total defl:	0.2 in		Max LL defl:	0.1 in				
Total defl. * I:	0.92 in^4		Required I:	4.61 in^4				
LL defl. * I:	0.71 in^4		Required I:	7.09 in^4				
Actual deflections:	TOTAL:	0. in		0. in				
Force analysis:								
Max. moment:	416	ft-lb	Max Shear:	416	lbs			
Selected Member	(2)	HF#2	1.5	X	9.25			
L								
Member	properties:	Provided:		Required:				
Mome	ent of inertia:	197.86 in^4		7.09 in^4				
Secti	on Modulus:	42.78 in^3		5.34 in^3				
S	Section Area:	27.75 in^2		4.16 in^2				
В	earing Area:			1.03 in^2				
Minimum bearing	dimensions:	3. in	Х	0.34 in				

John S. Apolis, F	P.E.	CSES, Inc.		Job number: 2						
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22					
Architect:	Suzanne	Zahr]	Page number:	U6					
BEAM DESIG	BEAM DESIGN (Uniform Load+Concentrated Load)									
2018 International	Building (Code (IBC)			2018 NDS					
Beam Descriptio	n: Garag	ge Floor Flug	sh Beam 2	Top of Stair						
Fully Supported:	1	Snow Load:		Wind Load:						
Repetitive Member:		P.T. Lumber:		Wet Use:						
Geometry and Loads:										
Span:	12 ft	Tributary Width:	1.33 ft	P Location:	8.25 ft					
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	96 lbs					
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	320 lbs					
Add'l uniform SL:		SL unit load:		Concentrated SL:						
Add'l uniform WL:		WL unit load:		Concentrated WL:						
DL Reaction 1:	162 lbs	DL Reaction 2:	126 lbs	Note: Design auton	natically uses					
LL Reaction 1:	539 lbs	LL Reaction 2:	419 lbs	ASD load combina	tions					
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs							
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs							
Total Reaction 1:	701 lbs	Γotal Reaction 2:	545 lbs							
Material Properties:										
E	1.3 msi	E'	1.3 msi							
Fb	850 psi	Fb'	935 psi							
Fv	150 psi	Fv'	150 psi							
Fc perp	405 psi	Fc perp'	405 psi							
Emin	0.47 msi	Emin'	0.47 msi							
Deflection analysis:										
For total lo	ad: Allowed	deflection criteria	, span/	240						
For LL of	nly: Allowed	deflection criteria	, span/	480						
Max. allowed total defl:	0.6 in		Max LL defl:	0.3 in						
Total defl. * I:	41.24 in^4		Required I:	68.73 in^4						
LL defl. * I:	31.72 in^4		Required I:	105.74 in^4						
Actual deflections:	TOTAL:	0.21 in		0.16 in						
Force analysis:										
Max. moment:	2147	ft-lb	Max Shear:	701	lbs					
Selected Member	(2)	HF#2	1.5	X	9.25					
	(-)									
Member	properties:	Provided:		Required:						
Mome	ent of inertia:	197.86 in^4		105.74 in^4						
Secti	on Modulus:	42.78 in^3		27.56 in^3						
S	ection Area:	27.75 in^2		7.01 in^2						
В	earing Area:			1.73 in^2						
Minimum bearing	dimensions:	3. in	Х	0.58 in						

P.E.	CSES, Inc.		Job number:	2022.172				
Mukher	jee Residenc	e	Date:	23-Dec-22				
Suzanne	Zahr]	Page number:	U7				
BEAM DESIGN (Uniform Load+Concentrated Load)								
Building C	Code (IBC)			2018 NDS				
n: Garag	ge Floor Flug	sh Beam N	North					
1	Snow Load:		Wind Load:					
	P.T. Lumber:		Wet Use:					
6 ft	Tributary Width:	12 ft	P Location:	5.25 ft				
	DL unit load:	12 psf	Concentrated DL:	161.76 lbs				
	LL unit load:	40 psf	Concentrated LL:	539.2 lbs				
	SL unit load:		Concentrated SL:					
	WL unit load:		Concentrated WL:					
574 lbs	DL Reaction 2:	452 lbs	Note: Design auton	natically uses				
1912 lbs	LL Reaction 2:	1507 lbs	ASD load combinat	tions				
0 lbs	SL Reaction 2:	0 lbs						
0 lbs	WL Reaction 2:	0 lbs						
2485 lbs	Fotal Reaction 2:	1960 lbs						
2 msi	E'	2 msi						
2600 psi	Fb'	2694 psi						
285 psi	Fv'	285 psi						
750 psi	Fc perp'	750 psi						
1.016 msi	Emin'	1.016 msi						
ad: Allowed	deflection criteria	, span/	240					
nly: Allowed	deflection criteria	, span/	480					
0.3 in		Max LL defl:	0.15 in					
10.12 in^4		Required I:	33.74 in^4					
7.79 in^4		Required I:	51.91 in^4					
TOTAL:	0.03 in		0.02 in					
3077	ft-lb	Max Shear:	2485	lbs				
(3)	LVL	1.75	x	9.25				
(3)		1.70) · EU				
properties:	Provided:		Required:					
ent of inertia:	346.26 in^4		51.91 in^4					
on Modulus:	74.87 in^3		13.71 in^3					
lection Area:	48.56 in^2		13.08 in^2					
earing Area:			3.31 in^2					
dimensions:	5.25 in	Х	0.63 in					
	P.E. Mukher; Suzanne N (Unif Building C n: Garag 1 6 ft 574 lbs 1912 lbs 0 lbs 2485 lbs 2 msi 2600 psi 2485 lbs 2 msi 2600 psi 285 psi 750 psi 1.016 msi ad: Allowed olity: Allowed olity: Allowed 0.3 in 10.12 in^4 7.79 in^4 TOTAL: 3077 (3) properties: on Modulus: fection Area: earing Area: dimensions:	P.E. CSES, Inc. Mukherjee Residend Suzanne Zahr N (Uniform Load Building Code (IBC) n: Garage Floor Flue 1 Snow Load: P.T. Lumber: 6 ft Tributary Width: DL unit load: LL unit load: LL unit load: LL unit load: State DL Reaction 2: 0 lbs SL Reaction 2: 0 lbs SL Reaction 2: 0 lbs WL Reaction 2: 10.12 in^4 TOTAL 0.03 in 3077 ft-lb (3) LVL	P.E. CSES, Inc. Mukherjee Residence Suzanne Zahr I N (Uniform Load+Concen Building Code (IBC) n: Garage Floor Flush Beam N 1 Snow Load: 1 Snow Load: 1 P.T. Lumber: 6 ft Tributary Width: 12 ft DL unit load: 12 psf LL unit load: 40 psf SL unit load: 40 psf SL unit load: 10 psf SL unit load: 10 psf SL vanit load: 10 psf 11 SL Reaction 2: 1507 lbs 0 lbs SL Reaction 2: 0 lbs 1912 lbs LL Reaction 2: 0 lbs 2 msi E' 2 msi 2 msi E' 2 msi 2 msi Fc perp' 750 psi 2 msi Fc perp' 750 psi 2 msi Fc perp' 750 psi 1.016 msi Emin' 1.016 msi ad: Allowed deflection criteria, span/ 0.3 in Max Shear: 0.3 in Max Shear: 1.0	P.E. CSES, Inc. Job number: Mukherjee Residence Date: Suzanne Zahr Page number: Page number: Page number: Page number: Page number: Number: State Page number: Page number: Page number: State Page number: State State Page number: State State State Page number: State Wather Page number: State State Wather State State Wather Page number: State State State Wather State State State Wather Page number State State Page number Wather State State Page number State State State State State State State Dutit load: State Page concentrated Di- Concentrated State State DL Reaction 2: 1507 lbs ASD load combinate O I				

John S. Apolis, P.E	4.	CSES, Inc.		Job	2022.172				
Project:	Mukherje	e Residence	ļ		Date:	23-Dec-22			
Architect:	Suzanne Z	Zahr		Page	number:	U8			
Post Design (Combined Axial and Moment Loading)									
2018 International Bu	2018 NDS								
Post Description: (Garage Cer	ntral Post							
Snow Load:	1	Wind Load:							
Repetitive Member:		P.T. Lumber:							
-									
Geometry and loads:									
Height	8 ft	w(d)		0 plf	$\mathbf{M}(\mathbf{d})$				
Axial Load	11841.77 lbs	w(b)		0 plf	M(b)	0 ft-lbs			
				• 1	(-)				
Le(d)	8 ft	Le(b)		8 ft					
Material Properties:									
Fb1	875 psi		Fb(d)'		1006.3 psi				
Fb2	875 psi		Fb(b)'		1006.3 psi				
Fc	1350 psi		Fc'		1077 psi				
E	1.6 msi		E'		1.6 msi				
Emin	0.58 msi		Emin'		0.58 msi				
Salastad Mambar	DE #2		4	5 5	V	5.5			
Selecteu Member:	DF #2).)	X	5.5			
Member properties:			Variable	b es:		d			
Section Modulus (d):	27.7 i	in^3	Rb(d)		4.18				
Section Modulus (b):	27.7 i	in^3	Rb(b)		4.18				
Section Area:	30.3 i	in^2	c		0.8				
Member stresses:	Provided				Required				
FcE(d)	1565 psi	>		fc	391 psi	OK			
FcE(b)	1565 psi	>		fc	391 psi	OK			
FbE	39875 psi	>		tb(d)	0 psi	OK			
FbE	39875 psi	>		ťb(b)	0 psi	OK			
Bending and Axial Compr	ession Check:								
NDS 2018 EQ 3.9-3		0.13		<	1.0	<u>OK</u>			

John S. Apolis, F	P.E.	CSES, Inc.		Job number:	2022.172				
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22				
Architect:	Suzanne	Zahr]	Page number:	U9				
BEAM DESIG	BEAM DESIGN (Uniform Load+Concentrated Load)								
2018 International	Building (Code (IBC)			2018 NDS				
Beam Descriptio	n: West	Window He	ader						
Fully Supported:	1	Snow Load:	1	Wind Load:					
Repetitive Member:		P.T. Lumber:		Wet Use:					
Geometry and Loads:									
Span:	5.5 ft	Tributary Width:	6 ft	P Location:	2.5 ft				
Add'l uniform DL:	155 lbs/ft	DL unit load:	12 psf	Concentrated DL:	125.76 lbs				
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	419.2 lbs				
Add'l uniform SL:	206 lbs/ft	SL unit load:		Concentrated SL:					
Add'l uniform WL:		WL unit load:		Concentrated WL:					
DL Reaction 1:	693 lbs	DL Reaction 2:	681 lbs	Note: Design auton	natically uses				
LL Reaction 1:	889 lbs	LL Reaction 2:	851 lbs	ASD load combinat	tions				
SL Reaction 1:	567 lbs	SL Reaction 2:	567 lbs						
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs						
Total Reaction 1:	1784 lbs	Γotal Reaction 2:	1744 lbs						
Material Properties:									
E	1.3 msi	E'	1.3 msi						
Fb	850 psi	Fb'	1075 psi						
Fv	150 psi	Fv'	173 psi						
Fc perp	405 psi	Fc perp'	405 psi						
Emin	0.47 msi	Emin'	0.47 msi						
Deflection analysis:									
For total lo	ad: Allowed	deflection criteria	, span/	240					
For LL of	nly: Allowed	deflection criteria	, span/	480					
Max. allowed total defl:	0.28 in		Max LL defl:	0.14 in					
Total defl. * I:	13.14 in^4		Required I:	47.79 in^4					
LL defl. * I:	8.97 in^4		Required I:	65.26 in^4					
Actual deflections:	TOTAL:	0.07 in		0.05 in					
Force analysis:									
Max. moment:	2706	ft-lb	Max Shear:	1784	lbs				
Selected Member	(2)	HF #2	1.5	X	9.25				
	(2)		1.0		- 120				
Member	properties:	Provided:		Required:					
Mome	ent of inertia:	197.86 in^4		65.26 in^4					
Secti	on Modulus:	42.78 in^3		30.2 in^3					
S	Section Area:	27.75 in^2		15.51 in^2					
В	earing Area:			4.41 in^2					
Minimum bearing	dimensions:	3. in	Х	1.47 in					

John S. Apolis, F	P.E.	CSES, Inc.		Job number:	2022.172
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22
Architect:	Suzanne	Zahr]	Page number:	U10
BEAM DESIG	N (Unif	form Load	+Concen	trated Load	l)
2018 International	Building C	Code (IBC)			2018 NDS
Beam Descriptio	n: Garag	ge Door Hea	ders		
Fully Supported:	1	Snow Load:	1	Wind Load:	1
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	9.5 ft	Tributary Width:	2 ft	P Location:	7 ft
Add'l uniform DL:	112 lbs/ft	DL unit load:	15 psf	Concentrated DL:	1247 lbs
Add'l uniform LL:	53.2 lbs/ft	LL unit load:		Concentrated LL:	
Add'l uniform SL:		SL unit load:	25 psf	Concentrated SL:	1652 lbs
Add'l uniform WL:		WL unit load:		Concentrated WL:	3213 lbs
DL Reaction 1:	1593 lbs	DL Reaction 2:	1002 lbs	Note: Design autor	natically uses
LL Reaction 1:	253 lbs	LL Reaction 2:	253 lbs	ASD load combina	tions
SL Reaction 1:	1455 lbs	SL Reaction 2:	672 lbs		
WL Reaction 1:	2367 lbs	WL Reaction 2:	846 lbs		
Total Reaction 1:	4649 lbs	Fotal Reaction 2:	2330 lbs		
Material Properties:					
E	2 msi	E'	2 msi		
Fb	2600 psi	Fb'	4310 psi		
Fv	285 psi	Fv'	456 psi		
Fc perp	750 psi	Fc perp'	750 psi		
Emin	1.016 msi	Emin'	1.016 msi		
Deflection analysis:					
For total lo	ad: Allowed	deflection criteria	, span/	240	
For LL or	nly: Allowed	deflection criteria	, span/	480	
Max. allowed total defl:	0.48 in		Max LL defl:	0.24 in	
Total defl. * I:	91.1 in^4		Required I:	191.78 in^4	
LL defl. * I:	28.01 in^4		Required I:	117.92 in^4	
Actual deflections:	TOTAL:	0.39 in		0.12 in	
Force analysis:					
Max. moment:	10938	ft-lb	Max Shear:	4649	lbs
Selected Member	(2)	LVL	1.75	x	9.25
	(2)		1,,0		7120
Member	• properties•	Provided		Required	
Mome	ent of inertia:	230.84 in^4		191.78 in^4	
Secti	on Modulus:	49.91 in^3		30.45 in^3	
S	Section Area:	32.38 in^2		15.29 in^2	
В	earing Area:			6.2 in^2	
Minimum bearing	dimensions:	3.5 in	Х	1.77 in	

John S. Apolis, P.E	C. C	SES, Inc.		Job 1	number:	2022.172
Project:	Mukherjee	Residence			Date:	23-Dec-22
Architect:	Suzanne Za	hr		Page 1	number:	U11
Post Design (Cor	nbined Ax	ial and M	lome	ent Loa	ding)	
2018 International Bu	ilding Code (I	(BC)			<u> </u>	2018 NDS
Post Description: (Garage Bear	n U4 Soutl	h Sup	port		
Snow Load:	1	Wind Load:		-		
Repetitive Member:		P.T. Lumber:				
Geometry and loads:						
Height	8 ft	w(d)		0 plf	M(d)	
Axial Load	4602 lbs	w(b)		0 plf	M(b)	0 ft-lbs
Le(d)	8 ft	Le(b)		8 ft		
Material Properties:						
Fb1	675 psi]	Fb(d)'		776.25 psi	
Fb2	675 psi]	Fb(b)'		776.25 psi	
Fc	1300 psi]	Fc'		716.83 psi	
E	1.3 msi]	E'		1.3 msi	
Emin	0.47 msi]	Emin'		0.47 msi	
Salaatad Mamban	<u>ШЕ #0</u>			1 5		5.5
Selected Member:	HF #2		4	4.5	X	5.5
Member properties:			Variabl	es:		d
Section Modulus (d):	22.7 in	^3]	Rb(d)		3.78	
Section Modulus (b):	18.6 in	^3 1	Rb(b)		5.11	
Section Area:	24.8 in	^2 0	c		0.8	
Member stresses	Provided				Required	
FcE(d)	1268 psi	>		fc	186 psi	ОК
FcE(b)	849 psi	>		fc	186 psi	OK
FbE	21631 psi	>		fb(d)	0 psi	OK
FbE	21631 psi	>		fb(b)	0 psi	ОК
Bending and Axial Compre	ession Check:					
NDS 2018 EQ 3.9-3		0.07		<	1.0	<u>OK</u>

John S. Apolis, P	P.E.	CSES, Inc.		Job number:	2022.172
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22
Architect:	Suzanne	Zahr]	Page number:	U12
BEAM DESIG	N (Unif	orm Load	+Concen	trated Load	l)
2018 International	Building (Code (IBC)			2018 NDS
Beam Descriptio	n: Beam	Below Nort	h Dormer	Ridge Post	
Fully Supported:	1	Snow Load:	1	Wind Load:	
Repetitive Member:		P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	10 ft	Tributary Width:	6 ft	P Location:	5 ft
Add'l uniform DL:	64 lbs/ft	DL unit load:	12 psf	Concentrated DL:	1242 lbs
Add'l uniform LL:		LL unit load:	40 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	1701 lbs
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	1301 lbs	DL Reaction 2:	1301 lbs	Note: Design autor	natically uses
LL Reaction 1:	1200 lbs	LL Reaction 2:	1200 lbs	ASD load combina	tions
SL Reaction 1:	851 lbs	SL Reaction 2:	851 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	2839 lbs	Total Reaction 2:	2839 lbs		
Material Properties:					
E	2.2 msi	E'	2.2 msi		
Fb	2900 psi	Fb'	3433 psi		
Fv	290 psi	Fv'	334 psi		
Fc perp	625 psi	Fc perp'	625 psi		
Emin	0.914 msi	Emin'	0.914 msi		
Deflection analysis:					
For total lo	ad: Allowed	deflection criteria	, span/	240	
For LL or	nly: Allowed	deflection criteria	, span/	480	
Max. allowed total defl:	0.5 in		Max LL defl:	0.25 in	
Total defl. * I:	86.61 in^4		Required I:	173.23 in^4	
LL defl. * I:	52.38 in^4		Required I:	209.52 in^4	
Actual deflections:	TOTAL:	0.25 in		0.15 in	
Force analysis:					
Max. moment:	9494	ft-lb	Max Shear:	2839	lbs
Selected Member	(1)	PSI	5 25	Y	9.25
	(1)		3.43	Λ	7.43
Member	nronerties	Provided		Required	
Mome	ent of inertia.	346.26 in^4		209.52 in^4	
Secti	on Modulus.	74.87 in^3		33.19 in^3	
Sood	lection Area:	48.56 in^2		12.77 in^2	
B	earing Area:			4.54 in^2	
Minimum bearing	dimensions:	5.25 in	Х	0.87 in	

John S. Apolis, P.E	. (CSES, Inc.		Jo	ob nu	imber:	2022.172	
Project:	Mukherjee	lukherjee Residence				Date:	23-Dec-22	
Architect:	Suzanne Za	ahr		Pag	ge nu	umber:	U13	
Post Design (Con	nbined A	xial and N	/Iome	ent Lo	badi	ing)		٦
2018 International Bui	ilding Code ((IBC)					2018 ND	S
Post Description: B	eam U12 S	Support						
Snow Load:	1	Wind Load:						
Repetitive Member:		P.T. Lumber:						
_								
Geometry and loads:								
Height	8 ft	w(d)		0	plf	M(d)		
Axial Load	2839 lbs	w(b)		0	plf	M(b)	0 ft-lt	os
					-			
Le(d)	8 ft	Le(b)		8	3 ft			
<u>Material Properties:</u>								
Fb1	850 psi		Fb(d)'			977.5 psi		
Fb2	850 psi		Fb(b)'		-	977.5 psi		
Fc	1300 psi		Fc'		3:	55.15 psi		
E	1.3 msi		E'			1.3 msi		
Emin	0.47 msi		Emin'			0.47 msi		
Selected Member:	HF #2			3	X		3.5	٦
				b			d	_
Member properties:			Variabl	es:				
Section Modulus (d):	6.1 ii	n^3	Rb(d)			4.85		
Section Modulus (b):	5.3 ii	n^3	Rb(b)			6.11		
Section Area:	10.5 in	n^2	с			0.8		
Member stresses: I	Provided				Re	equired		
FcE(d)	514 psi	>			fc	270 psi	OK	
FcE(b)	377 psi	>			fc	270 psi	OK	
FbE	15107 psi	>		fb	(d)	0 psi	OK	
FbE	15107 psi	>		fb	(b)	0 psi	ОК	
Bending and Axial Compre	ession Check:							
NDS 2018 EQ 3.9-3		0.58		<		1.0	<u>OK</u>	

John S. Apolis, P	P.E.	CSES, Inc.		Job number:	2022.172
Project:	Mukher	jee Residenc	e	Date:	23-Dec-22
Architect:	Suzanne	Zahr]	Page number:	U14
BEAM DESIG	N (Unif	form Load	+Concen	trated Load	l)
2018 International	Building (Code (IBC)			2018 NDS
Beam Descriptio	n: Garag	ge Floor Jois	sts		
Fully Supported:	1	Snow Load:		Wind Load:	
Repetitive Member:	1	P.T. Lumber:		Wet Use:	
Geometry and Loads:					
Span:	12 ft	Tributary Width:	1.33 ft	P Location:	3.833 ft
Add'l uniform DL:		DL unit load:	12 psf	Concentrated DL:	
Add'l uniform LL:		LL unit load:	50 psf	Concentrated LL:	
Add'l uniform SL:		SL unit load:		Concentrated SL:	
Add'l uniform WL:		WL unit load:		Concentrated WL:	
DL Reaction 1:	96 lbs	DL Reaction 2:	96 lbs	Note: Design auton	natically uses
LL Reaction 1:	399 lbs	LL Reaction 2:	399 lbs	ASD load combination	tions
SL Reaction 1:	0 lbs	SL Reaction 2:	0 lbs		
WL Reaction 1:	0 lbs	WL Reaction 2:	0 lbs		
Total Reaction 1:	495 lbs	Γotal Reaction 2:	495 lbs		
Material Properties:					
E	1.3 msi	E'	1.3 msi		
Fb	850 psi	Fb'	1075 psi		
Fv	150 psi	Fv'	150 psi		
Fc perp	405 psi	Fc perp'	405 psi		
Emin	0.47 msi	Emin'	0.47 msi		
Deflection analysis:					
For total lo	ad: Allowed	deflection criteria	, span/	240	
For LL or	nly: Allowed	deflection criteria	, span/	360	
Max. allowed total defl:	0.6 in		Max LL defl:	0.4 in	
Total defl. * I:	29.59 in^4		Required I:	49.32 in^4	
LL defl. * I:	23.87 in^4	0.0.	Required I:	59.67 in^4	
Actual deflections:	TOTAL:	0.3 in		0.24 in	
Force analysis:					
Max. moment:	1484	ft-lb	Max Shear:	495	lbs
Selected Member	(1)	HF #2	1.5	X	9.25
Member	properties:	Provided:		Required:	
Mome	ent of inertia:	98.93 in^4		59.67 in^4	
Secti	on Modulus:	21.39 in^3		16.56 in^3	
S	lection Area:	13.88 in^2		4.95 in^2	
В	earing Area:			1.22 in^2	
Minimum bearing	dimensions:	1.5 in	Х	0.81 in	

2022.172 Mukherjee

8116 SE 73rd St, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5381851, -122.2305458

Goog	SE 72nd St Computer Literate	SE 72nd St gath Ave SE Islander Middle School	SE 72nd St Map data ©2022
Date		12/20/2022, 7:06:25 AM	
Desig	n Code Reference Document	ASCE7-16	
Risk (Category	11	
Site C	lass	D - Default (See Section 11.4.3)	
Туре	Value	Description	
SS	1.467	MCE _R ground motion. (for 0.2 second period)	
S ₁	0.507	MCE _R ground motion. (for 1.0s period)	
S _{MS}	1.761	Site-modified spectral acceleration value	
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value	
S _{DS}	1.174	Numeric seismic design value at 0.2 second SA	
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA	

Wind Topographic Effects

WIND EXPOSURE CATEGORIES:

Wind Exposure Category

Exposure 'C' (1500 feet from Lake)

Exposure 'B' (all other areas)

WIND SPEED-UP (TOPOGRAPHIC EFFECT) - Kzt Factor :

John S. Apolis, P.E.		CSES, Inc.		Job	number:	2022.172	
Project:	Mukherjee	Residence			Date:	23-Dec-22	
Architect:	Suzanne Za	hr		Page	e number:	L1	
Lateral Loads Des	ign per AS	CE 7-16, V	Vind: S	Section 28	Seismic	: Section	12
(Simplified Envelope	Procedure P	Part 2)		2015 & 20	18 Internat	ional Building	g Code (IBC)
WIND LOADS	110	mph Basic Wi	nd Speed			·	2018 NDS
Ps = lambda * Kzt * Ps	s(30) * 0.6	Exposure	В	Roof Slope:	9.00	:12 =	36.9
Least Horizontal Dim	ension, feet:	72	Mean l	Roof Ht, feet:	23		(degrees)
lambda =	1.00	a =	7.2	ft, 2a =	14.4	ft	
Iw =	1.00	KzT =	1.60				
		Tabulated		Calc'd	Min	(Per section 2	28.6.4
		Wind		Design	Design	minimum tab	ulated wind
Tabulated Ps(30):	Zone	Pressure		Pressure	Pressure	pressure is 1	6 PSF for
(Refer to ASCE 7-16, Fig	gure 28.6-1)		(*lamb	da*KzT*0.6)		zonesA,C, ar	nd 8 PSF for
(horizontal)	А	21.6	psf	20.7	20.7	zones B, D)	
"	В	14.8	psf	14.2	14.2		
"	C	17.2	psf	16.5	16.5		
"	D	11.8	psf	11.3	11.3		
(vertical)	E	8.3	psf	8.0			
"	F	-13.1	psf	-12.6			
"	G	7.2	psf	6.9			
"	Н	-11.3	psf	-10.8			
(uplift on overhangs)	E(oh)	-7.6	psf	-7.3			
"	G(oh)	-8.7	psf	-8.4			
(Equivalent Lateral F	Force Proced	ure, Section	n 12.8)				
SEISMIC LOADS	Ie	1.0	R =	6.5	ASCE 7-10	5, Table 12.2.	1
Seismic Parameters	Group I	Site Class:	D				
per ASCE 7-16)	PGA (.2 sec)	1.4670	Fa =	1.00	ASCE 7-10	5 Table 11.4-1	l
	PGA (1 sec)	0.5070	Fv =	1.50	ASCE 7-10	5 Table 11.4-2	2
Seismic Design Categorie	es per ASCE 7-	-16 Tables 11.	6-1, 11.6	-2			
	Based on Sds:	D	E	Based on Sd1:	D		
PGA's based on peak grou	und acceleratio	ns per latest U	SGS Haz	ards Program	(based on l	at/lon).	
Ss =	1.4670		Sms	= Fa * Ss =	1.47	Equation 11.	4-1
S1 =	0.5070		Sm1	= Fv * S1 $=$	0.76	Equation 11.	4-2
Equations 11.4-3, 11.4-4	Sds = 2	2/3 * Sms =	0.98	Sd1 = 2/3	3 * Sm1 =	0.51	
Equation 12.14-11	Cs(%V) = (Set V)	ds / (R/I)) =	0.150	Building per	riod < 0.5 s	per IBC eq 1	12.8-7
D ogo Sh oor $= 0/37$	* W * 0 7	171 -	nof unif	ormly distri	butad ava	r floor area	
(0.7 reduction factor per A)	• vv • 0. 7 = SCE 7-16. Sect	4./4] tion 2.4.1. Ea (seismic v	vertical distrib	ution per II	3C eqs 12.8-1	1 & 12)
(reaction factor per fi				albuit			
	<u>Roof DL</u>	Wall DL (p	<u>sf)</u>	Story Heig	<u>ght</u>	Lateral	

Base = top of foundation	<u>(psf)</u>	<u>dist. over floo</u>	Load (psf)	
Roof	15	6	17	2.95
Upper Floor	12	12	9	1.79

Total Se	ismic	DL:	45

Na	<u>EA MESION</u>
1000	ZIA ADDITION, NORTH WALL
	200F LEVEL - L = 2,25'+2,25'
	Pw=10.5x5x14.2psf+16.5x3x20.7psf=1,398#
	P== 105/x 19/ x Z.95p= 588#
	$V = \frac{1/398#}{5.5} = 254 \text{plf} < 350 \text{plf} = 254 \text{plf} < 350 pl$
	H, = 254plfx 3' = 762 # - CONTINUOUS (2) STUD POSTS
	Hz= 7624 + 254 plf×6'= 2,286# < (2) 1,705#=7 (2) csi6
te	2,286 22,215# => <u>HDOC</u> BELOU PPER FLOOR LEVEL
	Pus, Exist = 11' × 14.4'× 14.2 p=f+11'× 7'× 113p=f+12'× 14.4'× 20.7p=f = 8,082# + 12'×7'× 16.5 p=f
	Pu, NEW = Pwiexist + 6'x6'x 14.2psf+4'x3'x20.7psf = 8,842#
	$P_{E,EXIST} = 75' \times 21' \times 2.95 post + 52' \times 21' \times 1.79 post = 6,601 \# \frac{1.410}{10000}$
	PE, NEW = 6,601# + 588# = 7,189# => 8.9% INCREASE
	< 10% INCREASE IN LOADS & NO CHANGE TO FULL HELGHT WALLS @ UPPER FLOOR
	-> NO LATERAL UPGRADE REQUIRED

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

_____ Page ____ L

Revision_

12

LATERAL PESILON
NORTH ADDITION, EAST WALL - L=18'
$F_{\omega} = 7 \times 10^{\circ} \times 16.5 \text{ pst} = 1,485 \text{ f}$
PE=91x211x2.25p=f= 558#
V= 1,485# = 83 plf < 100 plf => SW0
$H = R Z A \Gamma R' = C A L C I = 2 - 4 - 5 - 2 - 12 - 12 - 12 - 12 - 12 - 12 -$
$F_1 = 0$ (-5)
NORTH ADDITION, WEST WALL - L= 3.75'
$P_{\mu} = 1,485\#$ $P_{E} = 558\#$
15 = 1,485# - 39/ 15 < 550 JE = 24,13
3.75° - 0 10 ptt - 300 ptt - 2005
H = 396 pt × 8' = 3,168# < (2)1,705# => (2) (516
2 4/810# <u>HUUS</u>
NOETH ADDITION, NORTH COADING (TOTAL)
Pw = (42-f+2+ 48 f+2) ×20.7psf + (18 f+2+ 98 f+2) × 14.2 psf +
391 F42× 16.5psf+ 522 F42× 11.3 PSF = 17,121 #
PW, NEW = PW, EXIST + 156 ft2x (165 psf-113 psf) = 17,932#
P JEL AND DE C. (BOLIZALIZALIZA) => 4.7% INCREKSE
1 E, EXIST = +0 × 40 × C. 95 ps + (~ × 57 + Co × 15) × 1.79 ps = 11, 3024
PENEW = PEREXIST + 19/X15'X 179psf = 11,812#
ASG INCREASE
= 210% CHANCE IN LOUDING, NO LATEPAL UPGRADE REQUIRED
CONSULTING STRUCTURAL ENGINEERING GERVICES Project No. 2022.172 Date 12-23-20
Project Name _ MULHERJEE

Residential and Commercial Structural Design

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com

Comments		
Revision	Page	L3

6	*RACIE, NORTH WALL
	ROOF LEVEL & UPPER FLOOR LEVEL
	In the charace to any temptions
	PE: NO CHANGE TO EQ LOADING
	NO CHANGE TO WILL OPENINGS
	-> NO LITERAL DESIGN REQUIRED
4	ARAGE, South will
	ROOF LEVEL - L= 9'
	Pw = 14A' × 11' × 14.26# 2.6' × 11' × 113 psf + 14A' × 35' × 200.7 psf
	$F_{w} = 3.616 \#$ $F_{w} = 181' \times 301' \times (2.95 \text{ ocf} + 1.39 \text{ ocf}) = 7.560 \#$
	3616# 444 0 = 0 =
	$V = \frac{1}{q'} = 4.44 \text{ pt} = 550 \text{ pt} = 5005$
	H= 444 plf= 7 = 3, 108 + = 3,900 + = MSTZ48B3
	UPPER FLOOR LEVEL - L = 5.25'
	$P_{w} = 3616 \# P_{e} = 2,560 \#$
	$V = \frac{3.6164}{5.25'} = 689 \mu f < 710 \mu f = D = 5003X.$
	H= 689 pt=x7'= 4,823 # < 5,645# => HOUS w/ DF F

6311 17th Avenue NE, Seattle, WA 98115 Phone: (206)527-1288 Email: john@cses-engineering.com Project Name <u>MUKHERSEE</u>

Revision ____

Page L4

GARAC	LE, Etst	WHIL	- 4 - 1	4					
P., =	(88 ft ² +	60 ft2)	x 16.54	} 2 = Z	442#				
₽ _ >	16'x30'x	(2.95ps	£+ (74	fs (F) = 2	,275#				
v=	<u>2,442#</u> 141	= 174	plf = 2	.3≥) plf	#> <u>su</u>	1			
H =	174 p.f.	<7'=1,	218# <	- 2,215#	=P <u>HD</u>	202			
GAPAC	LE, WES	r utu		- 14' mix	<u>.</u>				
P =	148 fz2	× 20,7 p	sf = 3,	064 #					
P_ =	2,295\$	¢							
ช=	3 <u>,064</u> #	= 219	plfez	30 ptf	=D 500	1			
H=	-219 ptf	<7′=	1,538#	42,219	5#.≠₽	hpuz			
ONSULTING S	SULTING STRUCTURAL ENGINEERING SERVICES					Project No. 2022.172 Date 12-23-2			